emsTradepoint Limited

APl User Guide

June 2025

900 .
. . . TRADEPOINT

elp

Page | 2

EMSTRADEPOINT API GUIDE

This document is a comprehensive guide to integrating with emsTradepoint's Exchange API for gas
and carbon trading.

The emsTradepoint (ETP) APl provides programmatic access to New Zealand's leading energy trading
platform, enabling automated trading, market data analysis, and portfolio management for natural
gas and carbon markets.

For detailed parameter specifications and response schemas, refer to the interactive API
documentation.

HOW THIS DOCUMENT IS STRUCTURED

This guide is organised to take you from initial setup through to production deployment:

Getting Started: Authentication methods, base URLs, and your first API calls to establish
connectivity.

Core API Operations: Comprehensive coverage of all available endpoints including company
information, product listings, trading operations (bids, offers, orders), market data access, and
trading analytics.

API Reference: Technical specifications for request parameters, response formats, error codes, and
rate limiting policies.

Testing and Development: Detailed guidance on using the interactive Swagger documentation, UAT
environment testing strategies, and production access requirements.

Best Practices: Production-ready code patterns, error handling strategies, and complete workflow
examples.

CODE DISCLAIMER

All Python code examples in this document are provided for illustration purposes only to demonstrate
API concepts and integration patterns. These examples are not intended to be used directly in
production environments without proper testing, error handling, security considerations, and
customisation for your specific use case. Always thoroughly test and validate any code in the UAT
environment before implementing in production systems.

WHAT YOU CAN DO

e Trade Programmatically: Submit bids, offers, and manage orders automatically
e Monitor Markets: Access real-time market data, pricing, and trading activity

e Analyse Data: Retrieve historical trades, indices, and market statistics

e Manage Positions: Track your trading positions and exposure across products

¢ Integrate Systems: Connect your existing trading and risk management systems

MARKET COVERAGE

The API provides access to:

. EMS
TRADEPOINT

Page | 3

Gas Markets: On The Day (OTD) and Day Ahead (DA) natural gas trading
Carbon Markets: New Zealand Unit (NZU) carbon credit trading
Market Indices: FRMI/FRQI for gas, ECMI/ECQI for carbon

WHO SHOULD USE THIS API

Energy Traders: Automate trading strategies and market monitoring
Portfolio Managers: Track positions and analyse market exposure

Risk Managers: Monitor trading limits and compliance requirements
System Integrators: Connect trading platforms with back-office systems

Data Analysts: Access market data for research and reporting

PREREQUISITES

Before using the API, ensure you have:

An active ETP account

API credentials (client ID and secret) from ETP

Appropriate trading permissions for target markets

Understanding of the underlying market products and trading rules

IMPORTANT LEGAL NOTICE

Market Rules Compliance

Access to the ETP APIs and all underlying market data is strictly governed by ETP's Market Rules. By
using these APls, you acknowledge and agree that:

All APl usage must comply with the current Market Rules and any amendments
You are responsible for understanding and adhering to trading regulations
Market data usage is subject to licensing terms and restrictions

Trading activities through the API are bound by the same rules as manual trading
Violations of Market Rules may result in APl access suspension or termination

Before proceeding with API integration, please ensure you have reviewed and understood the
Market Rules. Contact emsTradepoint if you have questions about compliance requirements.

QUICK START

BASE URLS

Production: https://exchange.emsTradepoint.co.nz/api/vl

UAT/Testing: https://uat-exchange.emsTradepoint.co.nz/api/vl

. EMS
TRADEPOINT

Page | 4

AUTHENTICATION

All API requests require OAuth 2.0 authentication. Access tokens are valid for 2 hours.

GETTING STARTED

AUTHENTICATION METHODS

Server-to-Server (B2B)

For backend integrations, authenticate directly with your credentials.

import requests

import json

def get access token(client id, client secret, base url):
"""Get OAuth2 access token for B2B authentication"™"

url = f"{base url}/oauth/token"

payload = {
"client id": client id,
"client secret": client secret,

"grant type": "client credentials"

headers = {"Content-Type": "application/json"}

response = requests.post (url, json=payload, headers=headers)

response.raise for status()

return response.json() ["access token"]
Usage
BASE URL = "https://exchange.emsTradepoint.co.nz"
token = get access token("your client id", "your client secret",

Third-Party Applications

For user-facing applications, redirect users to:

def get authorization url(base url, client id, redirect uri):

"""Generate authorization URL for third-party authentication"""

return

BASE_URL)

f"{baseiurl}/oauth/authorize?clientiid={clientiid}&redirectiuri={redirect7

uri}é&response type=code"

Usage

etpsss -
. . . TRADEPOINT

Page | 5

auth url = get authorization url (BASE URL, "your client id",
"https://yourapp.com/callback")
print (f"Redirect user to: {auth url}")

API-Only Accounts

Request a dedicated read-only account with non-expiring credentials for automated systems.

MAKING AUTHENTICATED REQUESTS

Include your access token in the Authorization header:

class EmsTradePointAPI:

def init (self, base url, access_token):
self.base url = base url
self.headers = {
"Authorization": f"Bearer {access_token}",
"Content-Type": "application/json"

def make request (self, method, endpoint, **kwargs):
"""Make authenticated API request with error handling"""

url = f"{self.base url}/api/vl{endpoint}"

try:
response = requests.request (method, url, headers=self.headers,
**kwargs)

response.raise for status()
return response.json ()
except requests.exceptions.HTTPError as e:
if response.status code == 429:
print ("Rate limit exceeded. Implement backoff strategy.")
elif response.status code == 401:
print ("Authentication failed. Token may be expired.")
elif response.status code == 422:

print (f"Validation error: {response.json().get('error',
'Unknown error')}")

raise
except requests.exceptions.RequestException as e:
print (f"Request failed: {e}")

raise

Initialize API client
apl = EmsTradePointAPI (BASE URL, token)

API ENDPOINTS

etpsss :...

Page | 6

COMPANY INFORMATION

Get your company details and trading permissions.
def get company info(api):
"""Get company information and trading permissions"""

return api. make request ("GET", "/companies/ours")

Usage
company info = get company info (api)
print (£f"Company ID: {company info['company id']}")

print (f"User IDs: {company info['user ids']}")

PRODUCTS & MARKETS

List Available Products

def get products(api, market category=None) :
"""Get list of available trading products"""
params = {}
if market category:

params ["market category"] = market category
return api. make request ("GET", "/products", params=params)

Get gas products (default)
gas _products = get products (api)

Get carbon products

carbon products = get products (api, market category="NzU")

Get both gas and carbon products
all products = get products(api, market category="NzZU,NGP")

Get Product Details
def get product details(api, product id):

"""Get detailed product information including bid/offer stack"""

return api. make request ("GET", f"/products/{productiid}")

Usage
product details = get product details(api, "product 123")
print (f"Product: {product details['name']}")

print (f"Current price stack: {product details['price stack']}")

Market Status

def get market status(api):

etpsss :...

Page | 7

"""Get current state of all markets (OTD, DA, NzUu)"""

return api. make request ("GET", "/markets"™)

Usage
markets = get market status(api)
for market in markets:

print (f" {market['name']}: {market['status']}")

TRADING OPERATIONS

Orders

View and manage your trading orders:
def get orders(api, market category="gas", filters=None):
"""Get trading orders with optional filters"""
endpoint = "/orders" if market category == "gas" else "/orders/nzu"

params = filters or {}

return api. make request ("GET", endpoint, params=params)
def withdraw all orders (api):

"""Withdraw all live orders (bids and offers)"""

return api. make request ("PATCH", "/withdraw/all")

Get gas orders

gas_orders = get orders(api, market category="gas")

Get carbon orders with date filter

from datetime import datetime

today = datetime.now () .strftime ("SY-%m-%d")
carbon orders = get orders(api, market category="carbon",

filters={"date from": today})

Emergency: withdraw all live orders

withdraw all orders (api)

Bids
def submit bid(api, bid data):
"""Sybmit a new bid to the trading stack"""

return api. make request ("POST", "/bids", json=bid data)

def get bid details(api, bid id):
"""Get details for a specific bid"""
return api. make request ("GET", f"/bids/{bid id}")

etp::: X crom

Page | 8

def withdraw bid(api, bid id):
"""Withdraw a specific bid"""
return api. make request ("PATCH", f"/bids/{bid id}/withdraw")

Submit a new bid
bid data = {
"product id": "NGP_OTD AUCK",
"price": 12.50,
"quantity": 1000,
"delivery date": "2025-06-05"

try:
new bid = submit bid(api, bid data)
bid id = new bid["id"]
print (f"Bid submitted successfully. ID: {bid id}")

Get bid details
bid details = get bid details(api, bid id)
print (f"Bid status: {bid details['status']}")

except requests.exceptions.HTTPError as e:
print (f"Failed to submit bid: {e}")

Offers

def submit offer(api, offer data):
"""Suybmit a new offer to the trading stack"""

return api. make request ("POST", "/offers", json=offer data)

def get offer details(api, offer id):
"""Get details for a specific offer"""
return api. make request ("GET", f"/offers/{offer id}")

def withdraw offer(api, offer id):

"""Withdraw a specific offer"""

return api. make request ("PATCH", f"/offers/{offer id}/withdraw")

Submit a new offer
offer data = {
"product id": "NGP_OTD AUCK",
"price": 13.00,
"quantity": 500,
"delivery date": "2025-06-05"

etpsss :...

Page | 9

try:
new offer = submit offer (api, offer data)
offer id = new offer["id"]
print (f"Offer submitted successfully. ID: {offer id}")

except requests.exceptions.HTTPError as e:
if e.response.status code == 422:

error_detail = e.response.json().get ("error", "Unknown validation
error")

print (f"Offer validation failed: {error detail}")

TRADING DATA

Trades

View completed transactions

def get trades(api, market category="gas", filters=None):
"""Get completed trades with optional filters"""
endpoint = "/trades" if market category == "gas" else "/trades/nzu"

params = filters or {}
return api. make request ("GET", endpoint, params=params)

Get recent gas trades

gas_trades = get trades(api, market category="gas")

Get carbon trades for specific date range
from datetime import datetime, timedelta
yesterday = (datetime.now() - timedelta(days=1l)) .strftime ("%Y-%Sm-%d")

today = datetime.now () .strftime ("%Y-%m-%d")

carbon_ trades = get trades(api, market category="carbon",
filters={
"date from": yesterday,

"date to": today
})

for trade in carbon trades[:5]: # Show first 5 trades
print (f"Trade: {trade['quantity']} units at ${trade['price']l}l")

Market Activity

Get real-time market updates:

def get ticker(api, data type="all"):
"""Get latest market activity (trades, orders, or both)"""

endpoints = {

etp::: X crom

Page | 10

"all": "/ticker",
"trades": "/ticker/trades",
"orders": "/ticker/orders"

return api. make request ("GET", endpoints[data type])

Get latest 20 transactions of all types
latest activity = get ticker(api, "all")

Get only the latest trades

latest trades = get ticker(api, "trades")

Get only the latest orders

latest orders = get ticker(api, "orders")

print ("Recent Market Activity:")
for activity in latest activity[:5]:

print (f"{activity['type']l}: {activity['product']} -
S{activity['price']l}l")

Market Indices

Access historical pricing indices

def get indices(api, market category="gas", date range=None) :
"""Get market indices (FRMI/FRQI for gas, ECMI/ECQI for carbon)"""
endpoint = "/index" if market category == "gas" else "/index/nzu"

params = date range or {}
return api. make request ("GET", endpoint, params=params)

Get latest gas indices

gas_indices = get indices (api, market category="gas")

Get carbon indices for specific month
carbon_indices = get indices(api, market category="carbon",
date range={
"date from": "2025-05-01",
"date to": "2025-05-31"
)

print ("Gas Market Indices:")
for index in gas_ indices:

print (f"{index['period']}: S${index['value']l} ({index['type'l})")

Off-Market Trades

etp::: X crom

Page | 11

Submit trades executed outside the exchange:

def submit off market trade(api, trade data):
"""Sybmit an off-market trade for reporting"""

return api. make request ("POST", "/off market trades",
json=trade data)

Submit off-market trade

off market trade = ({
"product id": "NGP DA AUCK",
"price": 11.75,
"quantity": 2000,

"delivery date": "2025-06-06",
"counterparty": "Company XYZ",
"trade date": "2025-06-04"
}
try:
result = submit off market trade(api, off market trade)

print (£"Off-market trade submitted: {result['trade id']}")
except requests.exceptions.HTTPError as e:
print (f"Failed to submit off-market trade: {e}")

REQUEST PARAMETERS AND FILTERS

Pagination

e Default: 30 records per page

e Maximum: 30 records per page (cannot be increased)

e Use per_page parameter to request fewer records

e Paginated responses include navigation links in the Link header

Market Categories
By default, endpoints return gas market data. Use these filters to specify markets:

e market_category=NZU - Carbon market only
e market_category=NZU, NGP - Both carbon and gas markets

e No parameter - Gas market only (default)

Note: You'll receive a 401 error if you don't have permission to access requested markets.

Additional Filters

Most endpoints support additional filtering parameters. Check the live APl documentation for

endpoint-specific filters.

RESPONSE FORMAT

etpsss -
... TRADEPOINT

https://uat-exchange.emstradepoint.co.nz/api/docs

Page | 12

Success Responses

200 OK - Data Retrieved
{

"data": {
// Your requested data

}
201 Created - Data Submitted

{
"data": {

// Details of created resource

ERROR RESPONSES

400 Bad Request - Invalid Input
{

"error": "Invalid date format provided"

}

Common causes: Wrong date format, text where number expected, missing required fields.

401 Unauthorized - Authentication Failed
{

"error": "Invalid or expired access token"

}

Your access token is missing, invalid, or expired.

422 Unprocessable Entity - Business Logic Error

{

"error": "Validation failed: Exceeds trading limit"

}
Request is valid but violates business rules (trading limits, insufficient permissions, etc.).

429 Too Many Requests - Rate Limited
{

"error": "Rate limit exceeded"

}
You've exceeded the requests-per-minute limit. Implement exponential backoff retry logic.

RATE LIMITING

The APl implements rate limiting to ensure fair usage. When you hit the limit:

etpsss -
... TRADEPOINT

Page | 13

e You'll receive a 429 status code
e Implement retry logic with exponential backoff

e Monitor your request frequency to stay within limits

etpsss -
'.. TRADEPOINT

Page | 14

TESTING & DOCUMENTATION

INTERACTIVE API DOCUMENTATION (SWAGGER)

The ETP API provides comprehensive interactive documentation powered by Swagger/OpenAPI. This
is your primary resource for understanding API specifications, testing endpoints, and validating your
integration approach.

ACCESS THE DOCUMENTATION

e UAT Environment: https://uat-exchange.emstradepoint.co.nz/api/docs

HOW TO USE SWAGGER DOCUMENTATION

1. Explore API Specifications

e Endpoint Details: Each endpoint shows HTTP methods, parameters, and response schemas
e Request Examples: Copy-paste ready JSON payloads for testing

e Response Schemas: Understand exactly what data you'll receive

o Error Responses: See all possible error conditions and formats

2. Interactive Testing

e Before writing code, test endpoints directly in Swagger:
e Click "Try it out" on any endpoint

e Fillin required parameters

e Execute the request

e Review the response format and data

3. Authentication Setup

e Use the "Authorize" button in Swagger to set your bearer token

Test authenticated endpoints without writing code first

Verify your token permissions across different market categories

4. Parameter Validation

e Test different filter combinations
e Understand pagination behaviour
e Validate date formats and ranges

e Test market category filters (gas vs carbon)

SWAGGER BEST PRACTICES

Before Writing Code:

. EMS
TRADEPOINT

https://uat-exchange.emstradepoint.co.nz/api/docs

Page | 15

Test the exact endpoint you plan to use

Validate request/response formats

Test error conditions (invalid dates, missing auth, etc.)
Document expected responses for your integration

Example: Testing bid submission in Swagger first

swagger bid example = {

"product id": "NGP_OTD_ AUCK",
"price": 12.50,

"quantity": 1000,

"delivery date": "2025-06-05"

Test this payload in Swagger, then use in your Python code:

def submit bid from swagger example (api) :

return api. make request ("POST", "/bids", json=swagger bid example)

UAT ENVIRONMENT TESTING

The User Acceptance Testing (UAT) environment provides a safe sandbox for developing and
validating your integration before production deployment.

Getting UAT Access

Contact emsTradepoint to request UAT credentials

Provide Integration Details: Explain your intended use case and trading requirements
Receive Test Credentials: Get temporary client ID and secret for UAT testing

Test Account Setup: Receive demo trading account with test balances

UAT TESTING STRATEGY

Phase 1: Basic Integration Testing

def test basic integration():

"""Test fundamental API operations in UAT"""

Test authentication
token = get access_token("uat client id", "uat secret", UAT BASE URL)
apl = EmsTradePointAPI (UAT BASE URL, token)

Test basic data retrieval

company info = get company info (api)
products = get products (api)

markets = get market status(api)

etpsss -
... TRADEPOINT

Page | 16

def

print ("Vv Basic API integration successful")

return True

test market data access():
"""Test market data permissions and filtering"""

Test gas market access
gas_trades = get trades(api, market category="gas")

Test carbon market access (if permitted)

try:
carbon trades = get trades(api, market category="carbon")
print ("v Carbon market access confirmed")

except HTTPError as e:
if e.response.status code == 401:

print ("i Carbon market access not available")

Test filtering capabilities

filtered trades = get trades(api, filters={"date from": "2025-06-01"})

print ("v Market data access validated")

Phase 2: Trading Operations Testing

def test trading operations():

"""Test order management and trading functions"""

Test bid submission

test bid = {
"product id": "NGP_OTD AUCK",
"price": 10.00, # Use conservative test price
"quantity": 100, # Small test quantity
"delivery date": "2025-06-05"

bid result = submit bid(api, test bid)
bid id = bid result["id"]

Test bid retrieval
bid details = get bid details(api, bid id)

Test bid withdrawal
withdraw result = withdraw bid(api, bid id)

etp::: X crom

Page | 17

print ("Vv Trading operations validated")

def test error handling():
"""Test error conditions and edge cases"""

Test invalid product ID
try:

invalid bid = {"product id": "INVALID", "price": 10, "quantity":
100}

submit bid(api, invalid bid)
except HTTPError as e:

assert e.response.status code == 422

print ("v Invalid product ID error handling correct")
Test expired token handling

Test rate limiting behavior

Test malformed request handling

Phase 3: Production Readiness Testing

def test production readiness():

"""Comprehensive testing to demonstrate production readiness"""

Test complete trading workflow

automated trading example ()

Test error recovery

test error handling()

Test rate limiting compliance

test rate limiting behavior()

Test token refresh mechanism

test token management ()

Test market hours and edge cases

test market conditions ()

print ("v Production readiness validation complete™)

PRODUCTION ACCESS REQUIREMENTS

{. Important: Production Access Approval Process

etpsss :...

Page | 18

Before ETP grants access to the production platform, developers must demonstrate correct API
usage through comprehensive UAT testing. This requirement ensures market integrity and protects
all participants.

DEMONSTRATION REQUIREMENTS

1. Technical Competency

e You must demonstrate:

e Proper authentication handling and token refresh
e Correct error handling for all response codes

e Appropriate rate limiting and retry logic

e Proper parameter validation before submission

e Understanding of market categories and filters

def demonstrate technical competency () :

"""Example of what emsTradepoint expects to see"""

Robust authentication
token manager = TokenManager ("client id", "secret", UAT BASE URL)

Proper error handling
@handle api errors
def safe trading operation():

apli = EmsTradePointAPI (UAT BASE URL,
token manager.get valid token())

return submit bid(api, validated bid data)

Rate limiting compliance
result = make request with backoff (safe trading operation)

return result

2. Market Rules Understanding

e Demonstrate understanding of trading limits and exposure rules
e Show proper validation of delivery dates and product specifications
e Prove compliance with market timing and trading windows

e Evidence of proper risk management controls

3. Integration Quality

e Code Quality: Clean, maintainable, production-ready code
e Error Handling: Comprehensive error recovery strategies

e Security: Proper credential management and secure practices

etpsss -
... TRADEPOINT

Page | 19

e Monitoring: Adequate logging and monitoring capabilities

PRODUCTION APPROVAL PROCESS

Step 1: UAT Testing Completion

Complete testing checklist:

test checklist = {

"authentication": test authentication flows(),
"market data": test market data access(),
"trading ops": test trading operations(),

"error handling": test error handling(),

"rate limiting": test rate limiting compliance(),

"production ready": test production readiness()

All tests must pass before production request

assert all(test checklist.values()), "Complete all UAT testing first"

Step 2: Documentation Submission Submit to emsTradepoint:

e Integration Architecture: How your system integrates with the API

e Error Handling Strategy: Your approach to handling failures and errors

¢ Rate Limiting Compliance: Evidence of proper rate limiting implementation
e Security Measures: Credential management and security practices

e Testing Results: Evidence of successful UAT testing completion

Step 3: Code Review (if required) emsTradepoint may request:

e Code samples demonstrating proper API usage

e Evidence of Market Rules compliance in your implementation
e Demonstration of risk management controls

e Proof of proper error handling and recovery

Step 4: Production Credentials Upon approval:

e Receive production client credentials
e Get access to production APl endpoints

e Begin live trading operations

TESTING RESOURCES

Sample Test Scenarios

def comprehensive testing suite():

"""Complete testing suite for production readiness

etpsss -
... TRADEPOINT

Page | 20

test scenarios = [
Authentication scenarios
("Token refresh", test token refresh),

("Expired token handling", test expired token recovery),

Market data scenarios
("Gas market data", lambda: test market access("gas")),
("Carbon market data", lambda: test market access("carbon")),

("Historical data queries", test historical data),
Trading scenarios

#

("Bid submission", test bid submission),
("Offer submission", test offer submission),
("Order withdrawal", test order withdrawal),
(

"Invalid order handling", test invalid orders),

Edge cases
("Market closed handling", test market closed),
("Rate limiting", test rate limits),

("Network failures", test network resilience)

results = {}
for name, test func in test scenarios:
try:
results[name] = test func()
print (f"V {name}: PASSED")
except Exception as e:

results[name] = False

print (f"X {name}: FAILED - {e}")
return results

Run comprehensive testing
test results = comprehensive testing suite()
production ready = all(test results.values())

print (£"\nProduction Ready: {'YES' if production ready else 'NO'}")

DOCUMENTATION TEMPLATES

When requesting production access, include:

Integration Summary Template

integration summary = {
"purpose": "Automated gas trading for portfolio optimisation",
"trading volume": "Expected 1000-5000 GJ per day",

etp::: X crom

Page | 21

"market participation": ["NGP_OTD", "NGP_DA"],

"risk controls": "Position limits, price validation, manual
overrides",

"error handling": "Exponential backoff, circuit breakers, alerting"”,

"monitoring": "Real-time dashboards, automated alerts, audit logging"
}

Remember: Production access is a privilege that requires demonstrated competency and
compliance. Take UAT testing seriously and ensure your integration meets professional standards
before requesting production credentials.

SUPPORT

Need help? Contact the emsTradepoint Service Desk:

e Email: supportdesk@emstradepoint.co.nz
e Phone: (04) 590-6692

etpsss -
... TRADEPOINT

Page | 22

BEST PRACTICES

AUTHENTICATION MANAGEMENT

import time

from datetime import datetime, timedelta
class TokenManager:

def init (self,

self.

self.

self.

self.

self

client id,
client id = client id
client secret =
base url = base url
token = None

.token expires _at = None
def get valid token(self):

"""Get a valid access token,

if not self.token or datetime.now ()

self. refresh token()

return self.token

def refresh token(self):

"""Refresh the access token"""

self.token = get access token/(
self.client id,
self.client secret,
self.base url

)

Tokens expire in 2 hours,

self.token expires at =
minutes=55)

Usage

token manager = TokenManager ("client id",

client secret

datetime.now ()

client secret, base url):

refreshing if necessary"""

refresh 5 minutes early

+ timedelta (hours=1,

"client secret", BASE URL)

>= self.token expires at:

etpsss :...

Page | 23

RATE LIMITING & RETRY LOGIC

import time
import random

from requests.exceptions import HTTPError

def make request with backoff (api func, max retries=3, base delay=1) :
"""Make API request with exponential backoff for rate limiting"""
for attempt in range (max retries):
try:
return api_ func()
except HTTPError as e:
if e.response.status _code == 429: # Rate limited
if attempt < max retries - 1:
Exponential backoff with jitter

delay = base delay * (2 ** attempt) +
random.uniform (0, 1)

print (f"Rate limited. Retrying in {delay:.2f}

seconds...")
time.sleep (delay)
continue
raise # Re-raise i1f not rate limited or max retries exceeded
Usage

def safe get trades():
return api. make request ("GET", "/trades")

trades = make request with backoff (safe get trades)

etp::: X crom

Page | 24

ERROR HANDLING

def handle api errors(func):
"""Decorator for comprehensive API error handling"""
def wrapper (*args, **kwargs):
try:
return func(*args, **kwargs)

except HTTPError as e:

status code = e.response.status code
error_body = e.response.json() if e.response.content else {}
if status code == 400:

print (f"Bad Request: {error body.get('error', 'Invalid

input')}")

elif status _code == 401:

print ("Authentication failed. Please refresh your token.")
elif status code == 422:

print (f"Validation Error: {error body.get ('error',
'Business rule violation')}")

elif status _code == 429:

print ("Rate limit exceeded. Please slow down your
requests.")

else:

print (f"API Error {status code}: {error body}")

raise
except Exception as e:
print (f"Unexpected error: {e}")

raise
return wrapper
@handle api errors

def submit bid safely(api, bid data):
return api. make request ("POST", "/bids", json=bid data)

etp::: X crom

Page | 25

COMPLETE TRADING EXAMPLE

def automated trading example() :

"""Example of a complete trading workflow"""

Initialise API with token management

token manager = TokenManager ("client id", "client secret", BASE URL)

def get api client():
token = token manager.get valid token()
return EmsTradePointAPI (BASE URL, token)

apli = get api client()
try:

1. Check market status

markets = get market status(api)

if not any(market['status'] == 'open' for market in markets):

print ("No markets are currently open")

return

2. Get available products
products = get products (api)

target product = next((p for p in products if p['name'] =

'"NGP_OTD AUCK'), None)
if not target product:
print ("Target product not available")

return

3. Check current market activity

latest trades = get ticker(api, "trades")
if latest trades:
last price = latest trades[0]['price']

print (f"Last traded price: ${last7price}")

4. Submit a competitive bid (slightly below last price)

bid price = last price - 0.25 if latest trades else 12.00

bid data = {
"product id": target product['id'],
"price": bid price,
"quantity": 1000,
"delivery date": "2025-06-05"

etp::: X crom

Page | 26

new bid = make request with backoff (
lambda: submit bid(api, bid data)

print (£"Bid submitted successfully: {new bid['id']}")

5. Monitor bid status

time.sleep (5) # Wait a moment

bid status = get bid details(api, new bid['id'])
print (£"Bid status: {bid status['status']}")

except Exception as e:
print (f"Trading workflow failed: {e}")

Run the example

automated trading example ()

KEY RECOMMENDATIONS

¢ Handle Authentication: Store and refresh access tokens properly

e Implement Retry Logic: Handle rate limits and temporary failures gracefully
e Validate Inputs: Check data before sending to avoid 400 errors

e Monitor Permissions: Ensure your account has access to requested markets
e Use Filters Wisely: Apply appropriate filters to get only the data you need

e Test Thoroughly: Use the UAT environment before going live

etpsss -
... TRADEPOINT

